Webinar: Ergonomic Methods to Assess Complex Jobs - Cumulative Effects of Multiple Sub-tasks

Risk is determined based on the balance of load versus capacity

- Most assessment tools assess a single task, and many are based on maximum effort
 - o PROBLEM: Most jobs include multiple tasks that are very different

Structure of Tissues

- Passive: Connective tissue (fibrous vs elastic)
 - Mechanics of the tissue can be explained through a stress/strain curve based on a single type of load (Figure 1)
 - Elastic region = ability for the tissue to recover via healing mechanisms
 - Plastic region = permanent tissue damage
 - NIOSH action limit based on cadaveric spine testing (Figure 2)
 - Variability in mean values within and between studies
 - Action limit threshold is set at 3400N, but it doesn't mean that every spine is going to result in damage after 3400N
 - There is a continuum of risk based on individual factors, but this is the cut-off value in which we base decisions on

Figure 1: Passive tissue stress/strain curve

Figure 2: Compressive strength of cadaveric spines

- Mechanics of the tissue based on repetitive loading
 - Increasing repetition rate results in reduction in acceptable forces (Figure 3)
 - Sub-maximal loading over time without adequate recovery time reduces tissue tolerance and can lead to injury (Figure 4)

Figure 3: Force-repetition curve

Figure 4: Repetitive loading over time

- Cumulative tissue loading
 - PROBLEM: Current ergonomic assessment tools assess individual tasks and not the cumulative effect of all tasks
 - Example: All individual tasks are below the NIOSH compression limit, but is the cumulative exposure to these tasks acceptable? (Figure 5)

Figure 5: Example of individual task-based NIOSH assessments

- Active: Muscle tissue
 - Muscle fatigue is a temporary decrease in force/power capacity of skeletal muscle
 - Resulting from repetitive/prolonged efforts
 - Can exist even if a submaximal target force can still be achieved
 - Fatigue is not an event, but a process
 - Muscle tissue
 - Made up of a series of fascicles controlled by motor units, which are innervated by motor neurons
 - Each motor neuron innervates the same type of muscle fibres (fast vs slow twitch)
 - Motor recruitment:
 - Small, slow twitch (low threshold) are activated first and shut off last (Cinderella fibres – activated the entire time)
 - Typically fatigued with cumulative exposure due to inadequate recovery time
 - Increasing % MVC recruits intermediate and then large, high threshold motor units; high threshold cannot be maintained for long durations
 - Endurance time
 - Holding a contraction over time (amount of force that can be sustained over time)
 - Increasing the effort required reduces the time is can be sustained
 - Not a linear trend
 - Not directly applicable to many work tasks due to variability in demands
 - Fatigue recovery
 - Rohmert rest allowances for sustained/intermittent contractions
 - Unknown effect of aging on recovery from fatigue research required
 - Prolonged repetitive tasks
 - Fatigue can cause progressive tissue damage as well as altering muscle coordination and technique
 - May result in injury, decreased quality/productivity, etc.

Current Assessment Methods for Cumulative Exposure

- Metabolic equations (Garg et al., 1978)
 - Sum of kcals required for each sub-task
- NIOSH Composite Lifting Index (CLI)
 - o Incorporates assessment of the cumulative impact of several lifting tasks
- Cumulative spine compression and shear
 - o 3D Match software (Callaghan)
 - Force & posture analysis of sub-tasks based on a video
 - Lumbar motion monitor (Marras)
 - Directly measures spine kinematics

Recent Technology and Ergonomic Tools that Assess Multiple Subtasks

- Cumulative Passive Tissue Loading
 - Cumulative Lifting Index (CULI) for the Revised NIOSH Lifting Equation (Garg & Kapellusch, 2016)
 - Modified the NIOSH CLI continuous function for Frequency Multiplier (FM)
 - Conclusion: CULI partially addressed the underestimation of physical exposure using the time-weighted average approach, and overestimation of exposure using the peak exposure approach
- Passive Tissue Fatigue Failure (Gallagher & Schall, 2016)
 - Predicting failure using the Palmer-Miner rule (dividing # of cycles completed by # of cycles to failure)
 - Incorporates varying tasks performed at different % MVC for different durations
- Metabolic cost
 - Wearable technology
 - HR chest wrap or watches
 - Good sense of daily activity through steps
 - Garments to measure respiration, skin temperature (ex. Hexoskin, Montreal)
 - o Increases in manual material handling for 'just-in-time' manufacturing
 - Wearable technology can streamline collection of data for ease of sampling data
- Recommended Cumulative Rest Allowance (RCRA) (Potvin)
 - Maximal acceptable effort for repetitive tasks (Potvin, 2012)
 - Assumes no contraction can be held indefinitely
 - o ACGIH TLV released the 'Upper Limb Localized Fatigue: TLV(R)' (Figure 6)
 - Assumes a 6.6% contraction indefinitely

Figure 6: ACGIH TLV - Upper Limb Localized Fatigue

Figure 7: Comparison of MAE to ACGIH TLV

Assessment Tools Combining Multiple Subtasks

- Root-Mean-Quartic Equation
 - Combining different tasks requiring different %MVC
 - Allows assessment of different rotation schedules or work allocations
 - Weighted average of effort with MAE equation
 - Limitations identified with calculation
- Practical Fatigue Evaluation Model to Boost Productivity (Gibson): RCRA Method
 - o Rearranged MAE equation to use holding time to predict recovery time
 - Outputs rest required in seconds/cycle
 - o More conservative than Rohmert rest allowances
 - o Gives a better sense of cumulative risk
 - Jim Potvin shared excel spreadsheet of tool for trial

Motion Capture & Posture Prediction

- SantosHuman Inc. software
- Task simulation builder Jack software
- Wearable technology motion capture
 - o Validation studies being completed on Xsens, Perception Neuron