1. Value Added Roles of the Science and Practice of Ergonomics and Human Factors in 2022 and Beyond – Nancy Black (Keynote Speaker)

There are various resources available that can aid us in our ergonomic evaluations:

- Peer Reviewed Journals
 - o Applied Ergonomics: Human Factors in Technology and Society
 - Ergonomics: The International Journal of Research and Practice in Human Factors and Ergonomics
 - o Ergonomics in Design (highly recommended by speaker)
 - Human Factors: The Journal of the Human Factors and Ergonomics Society (HFES)
 - o International Journal of Industrial Ergonomics
 - Le Travail Humain (bilingual)
 - o Pistes: An Interdisciplinary Journal About Work and Health (Bilingual)
 - o IISE Transactions on Occupational Ergonomics and Human Factors
 - o Theoretical Issues in Ergonomics Science
 - Work: A Journal of Prevention, Assessment & Rehabilitation
- Free Online Resources
 - o Ergonomics Canada Magazine
 - Chartered Institute of Ergonomics and Human Factors (CIEHF)
 - International Ergonomics Association (IEA)
 - E-posters
 - HFE Tools https://iea.cc/ergonomics-in-practice/tools-for-assessing-and-implementing-hfe-in-the-workplace/
 - Google Spreadsheet on this website with various different resources
 - COVID-19 Resources https://iea.cc/covid-19-resources/
- International Ergonomics Association (IEA) Publications
 - o Ergonomic Checkpoints
 - Ergonomic Checkpoints in Agriculture
 - Principles and Guidelines for Human Factors/Ergonomics (HFE) Design and Management of Work Systems
 - Ergonomic Checkpoints in Health Care Work
 - o EQUID Design Process Guidelines
- Anticipated Publications
 - Ergonomics in a Nutshell for Project Managers Supervisors (2023)
 - Ergonomics in a Nutshell for Labour Organizers (2024)
- Publications recognized by the IEA will be controlled for quality
 - o https://iea.cc/

2. MSD Exposure Assessment – Current Practices and What the Future May Have in Store – Steve Fischer

- Majority of tools used for ergonomic assessments are catered to single task analysis
- The purpose of this study is to try and identify tools that can be used to analyze multitask work and/or determine ideal qualities that these tools should have
- Study surveyed ergonomic and safety professionals to try and determine which tools are currently being used
 - NIOSH was the most commonly used tool amongst professionals
 - o Snook, RULA, REBA were also in the top 5
- Current literature shows that tools used for multi-task work are related to mechanical damage (i.e. compression, shear, tension) and/or muscle damage (i.e. fatigue)
 - o Damage and recovery times may be different between mechanical and muscular
- Some tools the currently assess multi-task work include:
 - o LiffT
 - o DUET
 - The Shoulder Tool
 - Recommended Cumulative Recovery Allowance (RCRA)
- Conclusions
 - MSDs from mechanical damage vs. muscle fatigue may have different time dependencies
 - Tissue type and mode of loading matter when considering accumulation and recovery
 - High order "risk" metrics may be insufficient
 - There is currently limited availability of tissue/mode of loading specific tools
 - Additionally, tools that inform muscle fatigue accumulation and recovery times are limited
- Some non-invasive direct measurement tools exist (i.e. TuMeke Ergonomics, VelocityEHS AI Tools)
 - These tools use pose estimation to determine postures
 - Video-based pose estimation may play a key role in developing a multi-task tool
 - Can be used in combinations with single task evaluations (i.e. force measurements) to determine joint torque, muscle fatigue, etc.

3. Proprioception Measures on Heavy Lifting – Daniel Armstrong (PhD Presentation)

- Investigate different ways to reduce injuries associated with heavy lifting
- Paramedics cannot eliminate or substitute the risk
 - o Engineering controls are also not always feasible
 - As a result, they typically rely on administrative controls
- Literature from 2020 found that administrative controls were not effective in reducing injury risk for lifting (i.e. instructing workers on proper lifting techniques)
- Motor control based administrative interventions may be effective in changing worker behaviour
- Wanted to investigate why some people work in ways that minimize exposure to the body
 - O How can we change biomechanical exposure on the body?
- Hypothesis Increase in proprioceptor information results in a decrease in low back loads
- Study had paramedic, trained individuals, and novice participants
 - o Had participants lift weight in vertical direction to determine max strength
 - Then instructed individuals to either perform a self-selected posture, squat, or stoop
- Hypothesis was supported and it was found that an increase in proprioceptive ability seems to bias motor control on lower back loads
- Additionally, literature suggests that proprioceptive ability decreases with fatigue (i.e. repetitive lifting)

4. Lessons Past and Future... A Journey Through Ergonomics – Gary Dennis (Keynote Speaker)

- ManTRA Manual Task Risk Assessment Tool
- PErforM Participative Ergonomics Research Tool
 - o Lesson learned importance of practical training and visual engagement tools
 - o Paper based tool scale of 1-5 for force, posture, repetition
 - o Provides guides for which countermeasures should be implemented
 - Originally used for coal mining
- PECivCon Participative ergonomics tool for civil construction workers
 - Proved that paper-based tools tend to be difficult to use
 - Lesson learned need to engage all parties at the start and define responsibilities
- Train Facilitators Participative Ergonomic Approach
 - Lesson learned need to engage all levels of management and have practical ongoing training for facilitators
 - Having senior management buy in is very important

- Advanced and specialized analysis can be useful for appropriate projects but is not always essential to develop controls for many tasks
- Development of ErgoAnalyst tool (risk assessment tool)
 - Having a centralized online database is essential for large companies
 - Need to select the right facilitators and embed the system within the corporate process
- In order to effectively manage MSD risks we need to consider:
 - o How does an MSD injury really occur?
 - How can we use knowledge to design work that decreases the risk of injury while maximizing health and performance?
 - O How can we do this easily and effectively?
- We know there are 5 factors that can cause an MSD
 - Exertion (internal force and speed)
 - Posture (awkward postures exponentially increase risk)
 - Thresholds are body part specific
 - Movements (repetitive or static)
 - Repeated identical or similar movements matter
 - Exposure (duration vs. recuperation)
 - Environment (heat, cold, vibration, etc.)
 - There is an app to measure whole body vibration using accelerometers within a phone
- Used ErgoAnalyst to evaluate risk of tasks
 - Tool can help identify high risk body areas based on risk factors
 - Sometimes we have a green risk that results in injury risk avoidance and improving health and performance (i.e. going to the gym)
- What is participative ergonomics? Who needs to be involved?
 - Maximizes the effective involvement of workers as task experts
 - Workers need to be involved with developing effective controls
 - Workers need to take ownership of controls
 - Management needs to provide support for the process and to implement controls
 - Facilitators (i.e. ergonomists) are experts who assess risks and lead the participative process
 - Manufacturers know available controls and drive (action) implementation of controls
- How do we implement participatory ergonomics as effectively as possible?
 - o 6 step process
 - Training → Identify and Prioritize Hazardous Manual Tasks → Assess
 Risks → Develop and Evaluate Controls → Implement Controls → Assess
 and Review the Residual Risk
 - Cyclical process
 - o It is important to share the solution to highlight before and after scenarios
- How do you measure success of an ergonomics program?

- Lag Indicators
 - Decrease in injuries
 - Increase in productivity
 - Increase in work culture
- Lead Indicators
 - Controls implemented (i.e. pre-post reports)
 - Job analysis reports
 - Workplace analysis reports
- Use lead indicators to predict risk of injury rates
- How can we effectively decrease the risk of injury whilst maximizing health and performance?
 - Design controls (decrease load and/or increase tissue capacity) via participative ergonomics
- How can we get results as easily and effectively as possible?
 - Systemic approach with shared solutions

5. Integrating HFE into Healthcare Systems Simulations for Better Work and Better Care

- Nursing work is difficult to analyze with conventional human factors methods
- Study looks into stimulation as a method to analyze nursing work
- System Dynamics Modelling Patrick Neumann
 - Constant cycle of job design (workload) impacting fatigue which impacts error
 - o This model help managers understand workload results on quality
 - Results of study
 - Peak nurse fatigue increases through the work week if nurses are unable to recover in between shifts
 - Lag between peak fatigue, burnout, and absenteeism
 - Increase in work load results in a decrease in recover which results in an increase of errors
 - As more burnout nurses take time off, fewer burnt out nurses remain at work
 - A decrease in fewer burnt out nurses results in a decrease in errors and an increase in quality of care
 - Early RTW = increase in errors and burnout rates
- Discrete Event Simulation (DES) Sadeem Qureshi
 - Represent complex structures of a system as a sequence of ordered event and stages, in which variables change at a discrete set of points
 - Quantify effects of operational decisions of workload and quality of care
 - Can factor in walking patters, layout, logic decisions, priority sequence for patients
 - o Can test different scenarios (i.e. 12 hour shift with and without breaks)

- Model found that nurses doing 14 hours of work in a 12 hour shift (prepandemic)
- o After COVID used the model to map out the workday
 - Found that nurses with 5 COVID positive cases spent ~6 hours a shift to don/doff PPE
 - Average nurse spends ~4 hours to don/doff PPE during a shift
 - More COVID cases = a decrease in care time and quality of care
 - Nurses now have less time during a shift to perform work tasks due to time spent donning/doffining PPE
- Model has the capability to test different technical designs and operational policies
- Model helps to identify impact on nurse workload and quality of care
- DES with Biomechanical Load and Fatigue Michael Greig
 - DES shows task time and sequence information but misses biomechanical data
 - o Ability to add in physical workload to the model to asses loads on joints
 - Found that there was a decrease in lumber spine compression when you increase the number of COVID patients
 - More time was spent donning/doffing PPE which put less load on the back
 - Same pattern seen in shoulders
- In summary, there are different levels of models
 - System Dynamics (macro)
 - o DES (unit level)
 - Biomechanics (body of the individual)

6. The Art and Science of Ergonomics: Examples from Policing (Tanya Morose & Dwayne VanErd)

- Evidence Based Research = Practitioner + Best Available Research Evidence + Worker Experience
- We need to get creative to provide solutions to problems that don't fit guidelines and standard assessments (i.e. policing work)
- For police officers their cruiser is their office
 - Work is extremely variable
 - o 8-12 hr shifts (365 days a year)
 - Have to wear heavy PPE (vest and duty belt)
- We cannot eliminate or substitute concerns
 - Engineering controls are also usually difficult to implement
 - Often left with training, stretching, and PPE
- Research study conducted Synthesizing current RTW programs in policing
 - There are few studies regarding RTW programs in policing

- First stage of study was to gather current RTW practices and experiences through interviewers
- Gathered a variety of participants who had different injury types (physical, psychological, or a combination)
 - A lot of workers had a combination of physical and psychological injuries
- Results of study
 - Context
 - RTW can be challenging
 - Injuries can be complex
 - Culture
 - Hierarchical (chain of command)
 - Stoicism (injury = weakness)
 - Stigma
- 3 RTW Practice Themes
 - Accommodation
 - Takes time and effort to recover
 - Challenging to find meaningful work based on availability of work and restrictions
 - Communication
 - Genuine and timely communication is important
 - RTW process requires clarity and consistency
 - RTW process did not work well for people with mental health and psychological injuries
 - Worked better for physical injuries
 - Need to have a balance between flexibility and consistency
 - Trust Building
 - Lack of confidentiality
 - Perceived malingering (thinking people are taking advantage of the system)
 - Lack of trust (HR and wellness)
 - Fear that reporting an injury or taking time off would interrupt a career
- RTW guide for Ontario police services has been developed based on research results
 - o https://www.iwh.on.ca/publications/rtw-in-policing-time-to-act
- How do we support and quantify job demands with highly variable workplace demands?
 - Need to give meaningful work (some workers don't think that desk work is meaningful work, however it could be)
 - Use JDD's to determine placement this can be challenging based on the variability of work
- Considerations for complex, non-cyclical work
 - Document review prior to assessment
 - Staff sergeant/superintendent interviews
 - Onsite worker shadowing and interviews (multiple days)

- o Task variability (shift, division)
- Comprehensive task descriptions
- o Report interpretation
- Use a prevention based approach to support psychological H&S and worker well being